動機
經典的dp
Problem
Given a triangle
array, return the minimum path sum from top to bottom.
For each step, you may move to an adjacent number of the row below. More formally, if you are on index i
on the current row, you may move to either index i
or index i + 1
on the next row.
Example 1:
Input: triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]Output: 11Explanation: The triangle looks like: 2 3 4 6 5 74 1 8 3The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).
Example 2:
Input: triangle = [[-10]]Output: -10
Constraints:
1 <= triangle.length <= 200
triangle[0].length == 1
triangle[i].length == triangle[i - 1].length + 1
-104 <= triangle[i][j] <= 104
Follow up: Could you do this using only
O(n)
extra space, where n
is the total number of rows in the triangle?Sol
每個點都是由上面的兩個點的總和構成,遞迴 每個點都是index,dp
def legal(i,len)
i >= 0 && i < len
end
def minimum_total(tri)
i = 1
while i < tri.size
tri[i].each_with_index do |n,j|
maxN = Float::INFINITY
maxN = [maxN, tri[i-1][j]].min if legal(j ,tri[i-1].size)
maxN = [maxN, tri[i-1][j-1]].min if legal(j-1,tri[i-1].size)
tri[i][j] += maxN
end
#p tri[i]
i += 1
end
tri[-1].min
end