動機
兩題很像,所以就一起寫
Problem
Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache
class:
LFUCache(int capacity)
Initializes the object with thecapacity
of the data structure.int get(int key)
Gets the value of thekey
if thekey
exists in the cache. Otherwise, returns-1
.void put(int key, int value)
Update the value of thekey
if present, or inserts thekey
if not already present. When the cache reaches itscapacity
, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently usedkey
would be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1
(due to the put
operation). The use counter for a key in the cache is incremented either a get
or put
operation is called on it.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input[LFUCache, put, put, get, put, get, get, put, get, get, get][[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]Output[null, null, null, 1, null, -1, 3, null, -1, 3, 4]Explanation// cnt(x) = the use counter for key x// cache=[] will show the last used order for tiebreakers (leftmost element is most recent)LFUCache lfu = new LFUCache(2);lfu.put(1, 1); // cache=[1,_], cnt(1)=1lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1lfu.get(1); // return 1 // cache=[1,2], cnt(2)=1, cnt(1)=2lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2. // cache=[3,1], cnt(3)=1, cnt(1)=2lfu.get(2); // return -1 (not found)lfu.get(3); // return 3 // cache=[3,1], cnt(3)=2, cnt(1)=2lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1. // cache=[4,3], cnt(4)=1, cnt(3)=2lfu.get(1); // return -1 (not found)lfu.get(3); // return 3 // cache=[3,4], cnt(4)=1, cnt(3)=3lfu.get(4); // return 4 // cache=[3,4], cnt(4)=2, cnt(3)=3
Constraints:
0 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
- At most
2 * 105
calls will be made toget
andput
.
460 LFU Cache
與146不同的是要想辦法記錄每個key的頻率,一定要嘛? 因為當頻率一樣時要變成LRU。
這樣不能像146把所有key放在list中,所以用map紀錄次數,把key放到對應的list中。
為了驅逐的速度上去,最後就是記下如果滿了的話,要驅逐哪一個次數的list的最後一個key
class LFUCache {
private:
unordered_map<int,list<int>> l;
int c;
unordered_map<int, tuple<list<int>::iterator, int, int>> m; // iter, value, times
int last_frq = 1;
public:
// new empty list
tuple<list<int>::iterator, int, int>& moveToTop(int key) {
auto& tmp = m[key];
l[std::get<2>(tmp)].erase(std::get<0>(tmp));
l[std::get<2>(tmp)+1].push_front(key);
if (l[std::get<2>(tmp)].empty() && last_frq == std::get<2>(tmp))
last_frq = std::get<2>(tmp)+1;
auto ret = make_tuple(l[std::get<2>(tmp)+1].begin(), std::get<1>(tmp),std::get<2>(tmp)+1);
m[key] = ret;
return m[key];
}
LFUCache(int capacity): c(capacity) {
}
int get(int key) {
auto tmp = m.find(key);
if(tmp != m.end()) {
auto& tmp = moveToTop(key);
return std::get<1>(tmp);
} else {
return -1;
}
}
void put(int key, int value) {
auto exist = m.find(key);
if (exist != m.end()) {
auto& tmp = moveToTop(key);
m[key] = make_tuple(std::get<0>(tmp), value, std::get<2>(tmp));
} else {
if(m.size() >= c && m.size() > 0) {
int evict = l[last_frq].back();
m.erase(evict);
l[last_frq].pop_back();
if (l[last_frq].empty()) {
l.erase(last_frq);
last_frq = l.begin()->first;
}
//cout<< "evict: " << evict <<'\n';
}
if (m.size() < c) {
l[1];
l[1].push_front(key);
m[key] = make_tuple(l[1].begin(),value, 1);
last_frq = 1;
}
}
}
};