動機
讓我想起之前看有binary search的LIS,多看真的會有靈感
Problem
Given an integer array nums
, return true
if there exists a triple of indices (i, j, k)
such that i < j < k
and nums[i] < nums[j] < nums[k]
. If no such indices exists, return false
.
Example 1:
Input: nums = [1,2,3,4,5]Output: trueExplanation: Any triplet where i < j < k is valid.
Example 2:
Input: nums = [5,4,3,2,1]Output: falseExplanation: No triplet exists.
Example 3:
Input: nums = [2,1,5,0,4,6]Output: trueExplanation: The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.
Constraints:
1 <= nums.length <= 5 * 105
-231 <= nums[i] <= 231 - 1
Follow up: Could you implement a solution that runs in
O(n)
time complexity and O(1)
space complexity?Sol
因為只要找有沒有 A < B < C
所以 同時這個目標是遞迴的!!
所以就是從頭到尾一直更新剛好最接近的位置,同時判斷有沒有塞滿就好
class Solution:
def increasingTriplet(self, nums: List[int], startFrom=0) -> bool:
acc = [-math.inf]*3
acc[0] = nums[0]
for i in range(1,len(nums)):
for j in range(3):
if acc[j] == -math.inf or acc[j] >= nums[i]:
acc[j] = nums[i]
break
if acc[2] != -math.inf:
return True
return False