動機
這題是靠觀察時間複雜度找到解法的
Problem
Given four integer arrays nums1
, nums2
, nums3
, and nums4
all of length n
, return the number of tuples (i, j, k, l)
such that:
0 <= i, j, k, l < n
nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
Example 1:
Input: nums1 = [1,2], nums2 = [-2,-1], nums3 = [-1,2], nums4 = [0,2]Output: 2Explanation:The two tuples are:1. (0, 0, 0, 1) -> nums1[0] + nums2[0] + nums3[0] + nums4[1] = 1 + (-2) + (-1) + 2 = 02. (1, 1, 0, 0) -> nums1[1] + nums2[1] + nums3[0] + nums4[0] = 2 + (-1) + (-1) + 0 = 0
Example 2:
Input: nums1 = [0], nums2 = [0], nums3 = [0], nums4 = [0]Output: 1
Constraints:
n == nums1.length
n == nums2.length
n == nums3.length
n == nums4.length
1 <= n <= 200
-228 <= nums1[i], nums2[i], nums3[i], nums4[i] <= 228
Sol
如果硬幹是O(n^4),但如果當成某種3sum的話,就應該是合理的複雜度,也不會比這個更好,因為是必要試過所有組合
class Solution:
def fourSumCount(self, A: List[int], B: List[int], C: List[int], D: List[int]) -> int:
tmp = []
for c in C:
for d in D:
tmp.append(c+d)
candidates = Counter(tmp)
ret = 0
for a in A:
for b in B:
if -(a+b) in candidates:
ret += candidates[-(a+b)]
return ret