動機
複習換硬幣的dp isqrt是個很貴的運算
Problem
Given an integer n, return the least number of perfect square numbers that sum to n.
A perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 1, 4, 9, and 16 are perfect squares while 3 and 11 are not.
Example 1:
Input: n = 12Output: 3Explanation: 12 = 4 + 4 + 4.
Example 2:
Input: n = 13Output: 2Explanation: 13 = 4 + 9.
Constraints:
1 <= n <= 104
Sol
isqrt是個很貴的運算,所以要先把硬幣算完,再跑dp
class Solution:
def numSquares(self, n: int) -> int:
cs = set([x**2 for x in range(isqrt(n),0,-1)])
@cache
def dp(n):
if n in cs:
return 1
else:
ret = float('inf')
for x in cs:
if n-x > 0:
ret = min(ret, dp(n-x)+1)
return ret
return dp(n)