動機
寫解題心得才意識到,這就是與two pointer很像
Problem
The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.
- For example, for
arr = [2,3,4]
, the median is3
. - For example, for
arr = [2,3]
, the median is(2 + 3) / 2 = 2.5
.
Implement the MedianFinder class:
MedianFinder()
initializes theMedianFinder
object.void addNum(int num)
adds the integernum
from the data stream to the data structure.double findMedian()
returns the median of all elements so far. Answers within10-5
of the actual answer will be accepted.
Example 1:
Input[MedianFinder, addNum, addNum, findMedian, addNum, findMedian][[], [1], [2], [], [3], []]Output[null, null, null, 1.5, null, 2.0]ExplanationMedianFinder medianFinder = new MedianFinder();medianFinder.addNum(1); // arr = [1]medianFinder.addNum(2); // arr = [1, 2]medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)medianFinder.addNum(3); // arr[1, 2, 3]medianFinder.findMedian(); // return 2.0
Constraints:
-105 <= num <= 105
- There will be at least one element in the data structure before calling
findMedian
. - At most
5 * 104
calls will be made toaddNum
andfindMedian
.
Follow up:
- If all integer numbers from the stream are in the range
[0, 100]
, how would you optimize your solution? - If
99%
of all integer numbers from the stream are in the range[0, 100]
, how would you optimize your solution?
Sol
MaxHeap放小的數字,pop會拿到大的最小 MinHeap放大的數字,pop會拿到小的最大
這樣就能調整大小
class MaxHeap:
def __init__(self):
self.hq = []
def append(self,val):
heapq.heappush(self.hq,-val)
def top(self):
return -self.hq[0]
def pop(self):
return -heapq.heappop(self.hq)
def __len__(self):
return len(self.hq)
class MinHeap:
def __init__(self):
self.hq = []
def append(self,val):
heapq.heappush(self.hq,val)
def top(self):
return self.hq[0]
def pop(self):
return heapq.heappop(self.hq)
def __len__(self):
return len(self.hq)
class MedianFinder:
def __init__(self):
self.minq, self.maxq = MinHeap(), MaxHeap()
# premise: 0 <= len(maxq) - len(minq) <= 1
def addNum(self, num: int) -> None:
if len(self.minq) > 0 and self.minq.top() < num:
self.minq.append(num)
else:
self.maxq.append(num)
while len(self.maxq) - len(self.minq) > 1 or len(self.maxq) < len(self.minq):
while len(self.minq) > len(self.maxq):
self.maxq.append(self.minq.pop())
while len(self.maxq) - len(self.minq) > 1:
self.minq.append(self.maxq.pop())
#print("add",self.minq.hq, self.maxq.hq)
def findMedian(self) -> float:
#print("mid",self.minq.hq, self.maxq.hq)
if len(self.minq) == len(self.maxq):
return (self.minq.top()+self.maxq.top())/2
else:
return self.maxq.top()