動機
- 我們要搜尋,所以一個要上升一個要下降
- lis與一個要上升一個要下降的關係是?
Problem
A ramp in an integer array nums
is a pair (i, j)
for which i < j
and nums[i] <= nums[j]
. The width of such a ramp is j - i
.
Given an integer array nums
, return the maximum width of a ramp in nums
. If there is no ramp in nums
, return 0
.
Example 1:
Input: nums = [6,0,8,2,1,5]Output: 4Explanation: The maximum width ramp is achieved at (i, j) = (1, 5): nums[1] = 0 and nums[5] = 5.
Example 2:
Input: nums = [9,8,1,0,1,9,4,0,4,1]Output: 7Explanation: The maximum width ramp is achieved at (i, j) = (2, 9): nums[2] = 1 and nums[9] = 1.
Constraints:
2 <= nums.length <= 5 * 104
0 <= nums[i] <= 5 * 104
Sol
有構成ramp有兩個條件
i < j
nums[i] <= nums[j]
而現在我們要搜尋,所以一個要上升一個要下降,很像two pointer的2 sum
class Solution:
def maxWidthRamp(self, nums: List[int]) -> int:
stk = []
# index increasing, val decreasing
for i in range(len(nums)):
if not stk or nums[stk[-1]] > nums[i]:
stk += i,
ret = 0
for i in range(len(nums)-1,-1,-1):
while stk and nums[stk[-1]] <= nums[i]:
ret = max(ret, i-stk.pop())
return ret
也可以做lis
class Solution:
def maxWidthRamp(self, nums: List[int]) -> int:
stk = []
ret = 0
for i in range(len(nums)-1,-1,-1):
n = nums[i]
# index decreasing, val increasing
if not stk or stk[-1][0] < n:
stk += [n,i],
else:
j = stk[bisect.bisect(stk,[n,i])][1]
ret = max(ret, j-i)
return ret